A new tool created by University of Arkansas researchers and their colleagues will help pork producers increase productivity, decrease production costs and minimize the environmental impact of swine production in the United States.

With a total of $5 million in funding from the USDA, the team, including researchers at Purdue University and Virginia Tech, is developing an integrated management tool based on a comprehensive analysis of swine production – from crops used for feed to managing waste.

“A primary purpose of this work is to evaluate and mitigate the environmental footprint of swine production facilities,” said Greg Thoma, professor of chemical engineering. “What action can we take to limit greenhouse-gas emissions from these facilities without making processes more expensive for the producer? So we want to come up with something that will enable producers to make informed decisions about changes to production, such as breeding, feeding, waste-management and other practices. To do this, we must understand the entire system – or full life cycle – of swine production in this country.”

The overall goal of the project is to experimentally evaluate and develop technologies that mitigate greenhouse gas emissions. These technologies will support the development of an accurate life-cycle analysis that will serve as a model to demonstrate the environmental impact of various changes to production. For example, in a project spearheaded by Charles Maxwell, professor of animal science, the model will show how manipulating the diet of hogs will affect the amount and type of crops grown to feed the animals, as well as carbon emitted from the animals through burping and flatulence.

The model is flexible and allows for geographic customization. It will consider factors including weather patterns and annual rainfall, which affect decisions related to heating and cooling and the amount of manure that can be applied to land without affecting water quality.

An equally important goal is to make swine production cheaper and more efficient, so the project also will include a life-cycle cost analysis. Directed by Jennie Popp, professor of agricultural economics, this analysis will measure the economic impact of process changes. To use the example above, the amount or type of crops grown to feed animals may increase or reduce the pork producer’s feed costs, not to mention the impact to the soybean or grain farmer, who, is a critical part of the life cycle of swine production. The cost-analysis model will demonstrate the effect of changes made to the system.

“The beauty of these models is that the algorithms behind them will show what will happen, both environmentally and economically, if a producer decides to change swine diets – to substitute amino acids for vegetable proteins, for example,” Thoma said. “What impact will this have on emissions? Will it increase production? The models will provide these answers.”

The work includes an innovative project in which researchers – Marty Matlock and Tom Costello, professor and associate professor of biological and agricultural engineering, respectively – remove nitrogen and phosphorus from swine manure and then use these nutrients to grow algae as feedstock that can be converted into biofuel. Matlock will also manage research experiences for undergraduates to investigate how livestock production fits into the larger perspective of agricultural sustainability.

Each state – Arkansas, Indiana and Virginia – will have an extension component to communicate findings and benefits of the model and help producers apply the knowledge to make their operations more efficient and sustainable. Karl VanDevender, professor and extension engineer for the University of Arkansas Division of Agriculture, leads coordination of extension education efforts. To learn more about what the UA Division of Agriculture will do to share the model with Arkansas producers, go to www.extension.org.

“Unlike most natural resources, agriculture is renewable,” Thoma said. “But current practices do not allow us to manage it as such. This is what we’re trying to accomplish, a system that is efficient, more productive and yet cheaper to produce, and less damaging to land, water and air.”

As principal investigator, Thoma directs the overall project and also leads an interdisciplinary team at the University of Arkansas, which will receive approximately half of the total funding. The UA Division of Agriculture will receive $608,000, and the remainder will go to partner institutions.

Source: University of Arkansas